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Quasi-geostrophic /3-plane motion of a homogeneous liquid over topography is 
considered for situations in which there is a time-periodic forcing of a zonal current. 
Such an oscillatory current generates a topographic Rossby wave response that has 
a complicated, but periodic, temporal structure. The linear solution shows resonances 
at  all integer values of the /3-parameter. The nonlinear analysis demonstrates that for 
weak friction and forcing, the resonances are bent and multiple equilibria of the time- 
dependent Rossby wave states are possible in certain parameter ranges. While the 
basic forced flow in the absence of topography has no time-mean, the nonlinear 
amplitude equations show that a mean retrograde (westward) Eulerian zonal flow is 
generated in the interactions of the forced flow with the topography. This result is 
in agreement with a previous theory of Samelson & Allen, constructed for strongly 
nonlinear flow over a series of asymptotically long ridges. However, in contrast to 
the behaviour of their amplitude equations for certain parameter settings, the near- 
resonant weakly nonlinear model for more or less isotropic bottom topography 
appears non-chaotic for all accessible parameter values. 

1. Introduction 
In the past few years there has been considerable interest in the influence of 

topography on large-scale flows in oceans and atmospheres. Using a truncated 
spectral model for barotropic quasi-geostrophic flow, Charney & DeVore (1979) 
predicted that steadily forced zonal flow over shallow mountains could exhibit 
multiple stationary equilibria. The existence of multiple states for constant external 
parameters had potential implications for the interpretation of phenomena like 
atmospheric blocking, and the bi-modality of atmospheric flow and the position of 
the Kuroshio current. The wave-mean interaction Charney-DeVore model was 
shown to overestimate the parameter space domain of multiple equilibria (Davey 
1980a, b ; Hart 1981), because when wave-wave interactions are included the strong 
wave-mean coupling required to get multiple states is reduced. 

Two physical situations have been discussed where the original Charney-DeVore 
equations, or at least reduced versions of them with similar properties, appear as a 
rigorous asymptotic result. One case concerns zonal flow over a series of ridges with 
crests aligned perpendicular to the basic zonal current, and with slowly varying 
height in the cross-stream direction (Hart 1979). In the limit of very long ridges with 
close separations in the zonal direction, the wave-wave interactions scale out of the 
problem. The other asymptotic case deals with flow over more general topography, 
but with weak forcing, weak friction, and a zonal current that is near resonance 
(Pedlosky 1981). The imposed zonal flow velocity is nearly equal to the phase speed 
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of the topographically excited Rossby wave. In other words, the steady Rossby wave 
directly excited by the topography has the same spatial structure as a stationary free 
wave of the barotropic vorticity equation on a P-plane in the imposed steady zonal 
current. A finite-amplitude calculation then yields amplitude equations for the near- 
resonant mode which are identical in structure to those obtained by Charnay & 
DeVore (1979), if the topographic amplitude is considered small in the latter work. 
All the above models for steady forcing have at  least one stable fixed point, and 
extensive numerical calculations (Hart 1979) suggest that the steady Rossby wave 
solution(s) in the models are globally attracting. Thus there is no aperiodic time 
dependence of the predicted Eulerian fields. 

Samelson & Allen (1987) were motivated by coastal oceanographic applications 
where there are fluctuating wind stresses to study a version of the Charney-DeVore 
model with time-periodic forcing. They envisioned a periodic alongshore current 
flowing over undulations in the continental shelf. Because of the well-known analogy 
between the planetary vorticity gradient p-effect and vortex stretching over a 
uniform topographic slope, their zonally invariant depth changes associated with the 
continental slope produce a model which is similar to that for planetary Rossby 
waves. Using the anisotropic topographic scaling of Hart (1979), they arrived at a 
low-dimensional model similar to that of Charney & DeVore but with a periodic 
forcing term. They found both periodic and chaotic solutions of their model 
equations, as well as regions where more than one attracting state exists. In addition, 
they showed that a purely periodic forcing leads to a time-mean Eulerian westward 
flow in the response. Such a mean flow has important consequences for tracer 
transport, for example, and its effect on Lagrangian particle paths can be significant. 

Because of these results, we were motivated to attempt a laboratory experiment 
to investigate such processes further. To be practical, we had to consider more or less 
isotropic topography with similar cross-stream and zonal scales, rather than 
anisotropic ridges. The latter, in addition to being hard to construct, severely restrict 
parameter variations because of the requisite small lengthscale in the zonal direction 
for a laboratory apparatus of reasonable size. A topography with similar scales in 
both the downstream and the cross-stream directions is potentially more relevant to 
geophysical problems. As a first step, partially intended to aid in the interpretation 
of experimental results, we consider here the linear and weakly nonlinear theoretical 
problems of periodically forced flow over topography in a barotropic quasi- 
geostrophic fluid. The laboratory results will be reported in a future paper. The 
present work is organized as follows. After outlining the specific model, the forced 
linear problem, which has time-dependent coefficients, is solved exactly in fj 3. The 
linear solution shows that there will be resonances (an infinite response if friction is 
set to zero) a t  almost all integer values of the topographic P-parameter. The linear 
solution itself has a time mean, which also peaks at the resonances. To remove this 
resonance, and to consider how nonlinearity enters, we construct an asymptotic 
expansion for weak friction and forcing. This calculation is carried out in $4. A 
discussion of the results and a summary of the conclusions follow in $5. 

2. Statement of the problem 
The geometry of our problem is known in figure 1. We consider a one-layer 

constant-density flow in a cylinder of radius L. The fluid has a mean depth D and 
viscosity v. The cylinder is rotated at  a rate 0 which is made up of a large constant 
part 0, and a periodic modulation with amplitude 6' and frequency w .  The rotation 
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FIGURE 1 .  A cross-section of the flow. The rotation axis is oriented along the gravity vector 
and the upper surface is free. 

rate is given by Q = Q,(1 -6' sin ( w t ) ) ,  and we consider that 6' < 1 and w < SZ,. 
This leads, as shown below, to quasi-geostrophic dynamics. In addition, it is assumed 
that the external Froude number 

452; L2 
Fe=-, 

9 0  

with g being the gravitational acceleration, is small enough that the upper free 
surface undulations do not affect the internal dynamics. Formally this amounts to 
requiring that Fe < a:, where a, is the total wavenumber of a topographically 
excited mode. In  typical experiments a2 = 5.13 and F, is less than 1, so this condition 
is satisfied. The theory is easily modified to take free-surface height fluctuations into 
account, but for simplicity we consider situations where the interface motions are 
small compared with both D and the topographic variations. 

The bottom topography is given by a 'single-wave' structure 

HC = Hb Jn(an r )  COB (n8), (1) 

where J ,  is a Bessel function of index n, r is the non-dimensional radius (based on L ) ,  
8 the azimuthal (zonal) angle, and a,, is the total wavenumber of the topography. It 
is assumed that J,(a,) = 0 so that the topography vanishes a t  the outer sidewall. 
The philosophy is to study the response to flow over a single normal mode of the 
system and so the topography is chosen to be one of these modes. In  a channel an 
equivalent topography would be sin (kz) sin (Zy), say. For the linear problem, a 
general topography can be constructed of a sum of Fourier-Bessel modes with terms 
like those in ( l ) ,  and the response can be constructed by superimposing the individual 
responses. As far as the laboratory situation is concerned, having only one mode in 
HE simplifies both the construction of the experiment and the interpretation of the 
data. Although the theoretical results are derived for cylindrical geometry, similar 
results will apply to channel flows. In the latter, n can be interpreted as the 
downstream wavenumber and the total wavenumber a', = m2n2 + n2 would explicitly 
contain the cross-stream wavenumber m. The only differences will be in the cross- 
stream structure of the disturbances in the channel as compared to those in a 
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cylinder, and, in particular, the values of the interaction integrals in table 1 will 
change. 

When the tank rotates at an almost constant value of Q the free surface deforms 
into a parabola given by 92r2L2 

29 
H$=-. 

This parabolic distribution of height gives us an equivalent topographic /3-effect. 
Finally we consider the implications of the unique method of driving illustrated in 

figure 1. Our coordinates are imbedded in the cylinder so that the coordinate system 
is accelerating periodically. The Navier-Stokes equations of motion in this reference 
frame have the form 

Thus the modulation of the basic rotation produces a body force in the equations of 
motion. The curl of this body force is non-vanishing but constant in space so it 
excites a zonally invariant solid-body rotation in the frame of the cylinder. This solid 
rotation flow sloshes back and forth over the topography and provides the excitation 
of topographic Rossby waves in our experiments. 

The Rossby number is defined here in terms of the forcing frequency w ,  

w 
8E-, 

2 Q O  
(4) 

relating the forcing frequency to the mean rotation rate. This number is assumed to 
be small. We also assume that 8', which can be thought of as a Rossby number based 
on the relative flow speed and cylinder radius, is small. The usual quasi-geostrophic 
barotropic vorticity equation can then be derived in situations where the topographic 
height variations are small with respect to D. Dissipation is provided by Ekman layer 
suction at the bottom (only). In this model we neglect the viscous sidewall and 
replace the formal outer (r* = L)  rigid boundary condition with an impermeable one. 
Such a replacement has only small effects in similar linear and finite-amplitude 
problems (Hart 1972). 

If lengths are scaled with L,  time with w-', and velocity with wL, then the depth- 
integrated (barotropic) vorticity equation written in terms of the geostrophic 
pressure is 

< - x r  

The velocities are given by geostrophic balance, 

ap ap 
rae ar 

v = -  u = -- 
and the Jacobian operator is 

J(A,B) G ----- (Era; ::o)* 
The friction parameter, which represents the ratio of the forcing period to the 
Ekman spin-down timescale, is defined by 
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As stated above, when i2 = Q,(1 -#sin ( w t ) )  the forcing appears as a periodic 
vorticity source that is constant in space. This drives an axisymmetric solid-body 
rotation. If Q is small (values of 0.03 are typical in the laboratory) then the flow can 
be split up into a simple forced axisymmetric part and a topographically generated 

(8) 
fluctuation. We write 

P = -sin (t) + +(r, 0, t ) .  

If Q is not small we may rescale the amplitude and change the phase of the external 
modulation to give the first term on the right of (8). With this splitting the vorticity 
equation becomes 

s’r2 
4s 

The parameters in this equation are 

I+, = J,(a, r )  cos (no). (104  

The terms in (9) proportional to sin(t) represent forced advection of vorticity and 
forced flow over the zonally varying bottom topography, respectively. 

Equation (9) is to be solved with no internal singularities, and with the geostrophic 
stream function + being constant at r = 1. If (9) is integrated over the area inside the 
cylinder wall, a circulation condition at r = 1 is obtained (Hart 1979). The 
azimuthally averaged tangential velocity v(r = 1) in the +-field decays to zero in a 
spindown time. We then require that F(r = 1) = 0. 

3. The linear solution 
We first consider the forced linear equation obtained from (9) by setting the 

Jacobian term to zero. This is consistent when s’ is very small. Assume a solution 

= Re (F(t)  Jn(an r )  cine) with J,(a,) = 0. (11) 

This leads to a first-order equation for the complex amplitude F which can be written 
as 

where 

(12) 
dF -+ &F-iPF( 1-71 sin (t)) = a s i n  ( t ) ,  
dt 

(13a-c) 

The solution to (12) is obtained by writing 

F = Se-x(t)G(t), ~ ( t )  = yt-ipqcos(t), y EQ-iP, (14) 

and finding that, for zero waves a t  t = 0, 

G = sin ( t ’ )  ex(t’) dt’. l (15) 



442 J .  E .  Hart 

In evaluating this and other later integrals, considering exp (const x cos ( t ) )  as the 
generating function for the Bessel function I" is useful. The linear solution is found 

The second summation, multiplied by exp ( - Qt), is needed to satisfy a resting initial 
condition F(0)  = 0. The influence of this initial condition decays away in a few spin- 
down times. In  what follows we consider that the initial transients have decayed to 
inconsequential levels and consider only the first summation. 

The solution (16) has some features in common with that for linear leewaves 
excited by oscillatory flow over topography in a non-rotating fluid (Bell 1975). One 
difference is that our problem explicitly contains frictional damping. Another 
especially interesting aspect of (16), not present in the lee-wave problem that is 
invariant to reflection of the zonal direction, is that P(t)  has a complex non-zero 
average for most parameter settings. Integrating over a cycle of the forcing and 
denoting this with an overbar gives 

It is useful to observe that 

and that the parameter groups entering into (16) and (17a) are related to the 
topography and the Rossby numbers by 

and 
ns' 
2E 

&=-. 

Both the solution itself and the averages become very large for integer values of P. 
This resonance phenomenon is most prominent in the limit as Q+0. However, if 
J,(kv) + 0 a t  a resonant value /3 = k = 1 ,2 ,3 ,  . . . , then the flow will be small. The fact 
that the linear solution X, has an average means that there is a topographic vortex, 
in the time-mean, which is not in phase with the topography. The essence of the 
dynamics, described above for arbitrary pq,  can be illuminated by solving (12) using 
a regular perturbation in /37 4 1 with F = fo +p7f1 + . . . . It is readily shown that the 
solution at  order ( P v ) O ,  which is not periodically advected by the basic sloshing flow 
at this level, is given the purely sinusoidal form 

S ( y  sin ( t )  - i cos ( t ) )  
1-y2 f o  = 

The flow generated by the periodic solid rotation flowing back and forth over the 
topography has an in-phase and an out-of-phase component. Both components feel 
the bottom friction and so are multiplied by the complex number (1 - y2)-', for non- 
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4.62 x lo-' 

x. 0) 
-8.99 x lo-' 

-4.8 x lo-' 
0 18.0 36. I 

Time 

2.74 x lo-' 

x. ( 2 )  

- 5.39 x lo-' 

-2.85 x lo-' 
0 18.6 3' 

Time 

8.45 x 

x. (0 
3.70 x lo-' 

-7.72 x lo-$ 
0 18.4 3 

Time 

1.04 x 

X'(2) 
10-5 

- 1.02 x 10-3 
0 7.07 14.1 

Time 

FIQURE 2. Time series from the linear solution for X , .  All have Q = 0.04, S = 0.01. (a) /3 = 0.9, 
v = 0.5, ( b )  /3 = 0.9, 9 = 2.0, (c) /3 = 2.3, 71 = 0.5, (d) /3= 0.4, 7 = 5. 

15 FLM 214 
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FIGURE 3. The solution surface giving -x, from (16) as a function of p and q for Q = 0.1, 
S = 0.1. The maximum value is 0.209 and the minimum value is 0. 

FIGURE 4. The solution surface for xc from (16) as in figure 3. The maximum value is 0.124 and 
the minimum value is -0.087. 

zero Q .  The order-/hj correction fl is generated by vorticity advection of the 
sinusoidally varying mountain vortices by the basic sloshing : 

S(ysin2(t)-0.5isin (24) df'+yfl = -sin(t)f,, = - 
dt 1-y2 

Integrating this over a period shows that the stationary mountain-induced vortex is 
just 

S 
.E = -2(1+)' 

The imaginary component of L, which represents the amplitude of the J ,  sin (no) 
part of the flow phase-shifted westward from the topographic crests, is proportional 
to the friction parameter Q (see (17b) with k = 1). This is the part of the total 
geostrophic pressure field which has its highs correlated with the mountain upslopes. 
The resulting form drag is responsible for the zonally invariant retrograde mean flow 
generation described in the following section. There is a balance between mean flow 
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P 
FIQURE 5. A cut through figure 3 at = 1.0. The resonances are centred at integer values of 8. 

generation by form drag and mean flow damping by bottom friction. Both are linear 
in &. Thus the resulting zonal jets are dependent on friction for their existence, but 
their dynamics will be independent of its magnitude, except a t  resonance where X, 
is proportional to Q-'. 

Although the topographically forced Rossby wave has a simple spatial structure, 
its time dependence can be very complicated. For near integer values of p the 
summations in (16) and (17) will be dominated by a single term which has a 
frequency reflecting that particular k = p. However, even in this limit the 
exponential expression outside the summation can generate a contribution to the 
frequency spectrum that is multi-spiked and significant when f i r ]  is not small (e.g. 
when the frequency Rossby number B and the flow-speed Rossby number 6' are 
comparable). 

Figure 2 shows several example time series of X, for typical laboratory values of 
Q (the solution scales linearly with S). When p is near a resonant value and r ]  is smell 
the solution is almost monochromatic. However when pis  off-resonance, many terms 
in the sum contribute to F and the response involves higher-frequency harmonics. 
The same is true when p is near-resonant but r] is large. If p is non-resonant and r] 
is large the flows can become quite complex (figure 2 d )  with highly structured 
waveforms contained within each forcing cycle. Simple single-harmonic flow 
oscillations over topography can, evidently, generate quite complicated Eulerian 
time histories . 

Figures 3 and 4 show how the averaged values of X, and X, depend on /3 and 7 for 
a particular value of &. Changing Q alters the sharpness of the ridges but not their 
locations. If one is looking for large mean flows, then one needs to pick r] and p so that 
p is near a resonant integer k and Pr] is near a maximum of Jr(pr]). 

In the linear version of the problem the slopes of figure 3 are not folded over. This 
is illustrated in figure 5.  The behaviour near p = k is symmetric so that there is only 
one 1, for each value of p. We expect that if friction is small, nonlinearity will be 
important and may bend the resonance, If the bending is strong enough, then there 
will be multiple amplitudes of the averaged fields (and of F itself) for fixed external 
parameters. 

15-2 
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4. Finite-amplitude analysis 
I n  order to investigate resonance bending as well as the nonlinear evolution of such 

forced flows, we consider a near-resonant expansion. The analysis parallels that of 
Pedlovsky (1981) for the steadily forced problem. The idea is to  consider what 
happens a t  small friction when /3 is near k .  Then there will be a single dominant 
component of the linear solution F( t )  which is the resonant one. Since this mode is 
much larger than all the other non-resonant harmonics, we consider it by itself and 
ask how its evolution is affected by both the weak friction and by nonlinear 
interactions. To carry out the analysis we write 

$ = a$1+(r2$2+c3$3+.. . ,  (18) 

where a%$Q 1, 

and S is taken to be positive without loss of generality. 
The /3 parameter is assumed to be near-resonant so that 

/ 3 = j + A ,  

wherej is an integer and A is small number of order u2. The other parameters are 
chosen so that Q and r a r e  both of order u2. Time is split into a fast time (order one) 
and a slow time 7 = &. Thus the time derivative transforms as 

a a  a 
at at a7 --+-+u2- 

Inserting the expansion (18) into (9) and using this ordering yields a sequence of 
problems, the solution of which will give the long-time evolutionary behaviour of the 
near-resonant mode. At order u we get the linear but inviscid problem : 

The solution for the resonant mode is 

q51 = Re (A(7) eiX@) Jn(an r ) ) .  

From here on 

The goal of the finite-amplitude analysis is to determine A(7).  At O ( a 2 )  the 
vorticity equation is identical to (19) except that  q51 is replaced by q52. This is because 
J(q51, V2q51) = 0 and the topography, which is proportional to S = u3 has not entered 
the problem at this level. The solution again includes the resonant mode, which can 
be renormalized into and thus is not explicitly carried in the calculation. In  addition 
there is the possibility of a slow-time-varying zonal flow. Thus, we take 

= O2(r,  7 ) .  (21 1 
The zonal flow correction (modifying the original fast-periodic part in (8)) is not yet 
determined. 

The order-u3 equation is 
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When all terms on the right-hand side of (22 )  that project onto the free solution (20) 
are removed, the amplitude equation of the slow variation of A with T is obtained. 
Operationally we pick off all modes on the right-hand side with exp(iX(t,8)) 
dependence. The right-hand side of ( 2 2 )  is multiplied by exp (-iX(t,  O ) ) ,  the adjoint 
time and &function to the homogeneous solution (20 ) ,  and integrate over a cycle in 
t and in 8. To obtain the projection onto the spatial structure of the resonant mode, 
the terms remaining are multiplied by rJn(a,r) and integrated over radius. The 
amplitude equation that results represents the removal of secular resonances in the 
expansion. It is 

where 

In order to close (23 )  an equation for the mean flow correction a2 is needed. This 
function changes only in r and T and it can only be determined a t  order u4. The mean 
flow is altered by vorticity advections, topographic interactions and friction 
according to 

avw2 +-V2@, Q 
= -J(a, V2q53+7h)--J(q5,,VPq51). r 

a7 a2 
(24 )  

Here the overbar denotes a time average over a cycle in t ,  and an average around 0 
in azimuth. As shown in Pedlosky (1981), it is not necessary to explicitly calculate 
q53 in order to evaluate the right-hand side of (24 ) .  Integrations by parts in the 
@-average gives 

avw, +-V2@ Q - _ _  ' a rq5 2 (V2q53+$h)) aT ~2 2 - r a r a e  

We now substitute for from (19). Further integrations by parts in 8 and t lead to 

Now (22 )  can be used directly to show that 

a 
= -nu; -JJ",(a, r )  2 Im (AIT), (27 )  r ar 

where the last step is via application of (23 ) .  Finally we notice that the G2(r, 7)-field 
separates in radius and time. Define M(t )  by 

The slow-time zonal current v2 has a broad jet-like profile in radius with no flow 
reversals, as shown in figure 6. Multiple jets, all in the same direction, are found if 
a, corresponds to a second or higher root of J,(a,) = 0. It will turn out that M is 
steady on the slow-time so (28 )  means that there is a constant azimuthally invariant 
current generated by the Rossby waves sloshing back and forth over the topography. 



448 J .  E .  Hart 

r 

FIGURE 6. The time and zonally averaged flow velocity profile. The ordinate shows JE(a, r)/r 
for n = 2. 

The integrals in (23) are now carried out using the r-functions in (28). We make one 
last transformation : 

A = I,q-+(X,-iX,),  M = II,]2q-kqt), 7 /  = q b ,  

where q bn 1 P j l 2 3  

and b,  = 4n2a, J i - l ( a n )  ~r-’(J~(a,r)-4J~(anr)&2((n,r))dr. 0 

This yields the final amplitude equations for the long-time evolution of the near- 
resonant mode : 

(29) 

where 

and (33) 

The definition of 6 should not be confused with that used in (8). 
The values of b, have been tabulated for several values of n using a single humped 

radial distribution of topography. The results are shown in table 1. 
The amplitude equations (29)-(31) are identical in form to those of Pedlosky (1981) 

for stationary Rossby waves. His equations in turn are the same as the anisotropic 
mountain equations of Hart (1979) when the forcing is near resonant and small in the 
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n an bn 

1 3.832 -11.6 
2 5.136 13.7 
3 6.380 100.4 
4 7.588 225.9 

TABLE 1. Wave-mean interaction integrals 
0.35 r 

449 

FIGURE 7. The region of parameter space where multiple real and steady solutions of the 
nonlinear amplitude equation are found. 

latter. Notice that in contrast with the Samelson & Allen nonlinear amplitude 
equations, there is no periodic forcing in (29)-(31). All the fast-time dependence is 
here contained in the linear solution. One result of this is that there is apparently no 
chaotic behaviour in the present model. The scaling is such that the fast-time zonal 
flows, dj3(r, t )  and higher orders, do not enter into a determination of the amplitude 
equations. It is when these fast-time zonal currents are significant that chaotic 
motions in the Eulerian fields become possible. 

Numerical integrations of (29)-(31) indicate that solutions always proceed to a 
stable steady state. These steady solutions are given, as in Pedlosky (1981), by the 

(34) 
real roots of 

Since this is a cubic, there are either one or three real roots. Equation (34) shows that 
when a real root exists it must be negative. Applying the standard condition for the 
existence of all real roots to a cubic polynomial with real coefficients gives a simple 
delineation of the parameter space occupied by multiple steady states. For (34) this 
condition for multiple real roots reduces to 

p2u+ (6- U)2U+ 1 = 0. 

-- 3p2 1 +  ( l+-+- %2 q <0. 
6 2  

(35) 

Equating this expression to zero and solving for S3 as a function of p2S2 gives the 
range of 6 for multiple roots for any p2S2 less than one third. The formula is 
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6 

FIGURE 8. Typical distributions of U with 6. (a) ,uz = 0.7, (p) ,u* = 0.3 

The curves are plotted in figure 7. The diagram is best interpreted as giving the range 
in y over which multiple roots occur for each 6. Only negative and somewhat 
substantial 6 values give multiple roots. This means that the sign of 46, must be 
negative. The system must be below resonance (or subresonant) for n > 1, but must 
be super resonant ( A  > 0) for n = 1. It will be more difficult to make 6 large at large 
n, because the b,  are larger. Also, as AS is made larger, the region of multiple equilibria 
will occur at larger A ,  that is farther from linear frequency resonance. 

Figure 8 shows the steady solutions U for two values of y2. Looked a t  upside down, 
they illustrate the bending of the resonance discussed earlier. In  figure 8 (a ) ,  for each 
value of 6, y2 is too large to fall within the 3-solution region of figure 7 and only one 
U exists. When y2 decreases to 0.3 for a range of 6 the tipping or folding of the valley 
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creates three possible U values. It is easy to show that the inner root is linearly 
unstable. 

From (34) it is seen that the maximum amplitude of the retrograde mean current 
is obtained when 6 = -,LL-~, and has a value U = -pP2. This relationship giving the 
biggest possible mean zonal velocity translates into 

suggesting that large mean Eulerian currents would be obtained on the subresonant 
side of the j th  resonances for n > 1. In a typical case where is order one and S is 
not too much less than &, the large values of b, indicate that the shift away from the 
linear resonance case can be substantial and increases rapidly with the bottom 
topography amplitude. This type of behaviour is exactly what we find in the 
laboratory (J. M. Pratte & J. E. Hart, in preparation). 

5. Conclusions 
A sinusoidal oscillatory zonal flow over topography generates a topographic 

Rossby wave field. If there is no advection by the oscillatory current, only vortex 
stretching, then a pure single-frequency motion ensues. Vortices are alternately 
generated by planetary vortex compression and expansion in a symmetric manner. 
There is no net mean flow generation. However, when advection of the wave field by 
the oscillatory basic current is taken into account (q > 0 ) ,  the periodic advection 
coupled with the natural westward propagation of Rossby waves leads to an 
asymmetry that can generate a stationary component to the linear solution. When 
friction is present, the stationary field has a component with anticyclones (high 
pressures) on the westward sides of the crests. This generates a wave drag which 
causes a retrograde (westward) mean flow generation. The wave amplitude and mean 
flow generation is friction-limited near resonance in the linear problem. Resonances 
occur when the natural frequency of a Rossby wave with an azimuthal wavenumber 
n and total wavenumber a (contained in the bottom topography spectrum) is equal 
to an integer multiple of the forcing frequency w .  

The weakly nonlinear analysis showed that the resonances are bent to the 
subcritical side when n > 1. That is, the larger wave responses to the applied forcing 
should appear at  forcing frequencies w lower than that required for resonance. 
Hysteresis and multiple solutions with different periodic and steady components are 
also predicted. In the weak friction limit these multiple states for fixed external 
parameters occur when Q2AP2 is less than one third and S2b,lI,12Ad-3 falls into a 
fairly narrow range of possible values between 0 and -0.3 whose width depends on 
the smallness of Q2k2 (figure 7) .  No chaotic behaviour has been found in extensive 
numerical integrations of the model studied here. Orbits always fall onto one or more 
of the attracting fixed points of equations (29)-(31). 

As with any linear or weakly nonlinear model, it is appropriate to ask questions 
about the range of validity. How small must u be for the analysis to work ? For finite 
(+ (i.e. finite topography), are the predicted retrograde flows suppressed by 
nonlinearities and wave interactions scaled out of the analysis ? Can one observe the 
complex time dependencies suggested by the linear theory in a real physical system ? 
Current laboratory experiments indicate that the multichromatic time series and 
subresonant mean flow maxima predicted for n = 2 topography indeed occur. 
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However, good quantitative agreement between theory and experiment for modest 
topography features of order 10% of the fluid depth requires modifications to the 
present theory. 

Compared with the Samelson-Allen model of oscillatory flow over topography, the 
present Eulerian fields are rather tame. After initial transients die out, the solutions 
are periodic in time, never chaotic. Eulerian chaos may appear at  large topographic 
amplitudes not covered by our model, but the relaxation of the anisotropic mountain 
limit for weak forcing appears to lead to a system with no chaos. On the other hand, 
the Lagrangian trajectories in our model are much more complicated and ch4otic 
than those found in the anisotropic mountain model when the Eulerian fields in both 
cases are periodic. The trajectories of fluid columns are given by the Hamiltonian 
system 

dr - 1 W ( r ,  8, t)  
dt r a8 ' 
- - u = - -  

where the total stream function P serves as the Hamiltonian. In the anisotropic 
mountain limit the azimuthal angular velocity v / r  is independent of r so that (39) can 
be integrated (for periodic w/r) by itself. Once B(t) is a known periodic function, (38) 
can be integrated as a one-dimensional dynamical system with time-periodic 
coefficients. Because the phase-space dimension of this latter problem is two ( r  and 
the phase of time), the resulting particle paths are not chaotic. 

In our problem there is no such simplification. The Hamiltonian trajectory 
equations are obtained using (8), (18), (21) and (28). For wavenumber n = 2 fields 
they are 

where the steady values of A and M are retrieved from (34), (29)-(31) and the 
transformations following (28). Equations (40) and (41) are not integrable when u is 
non-zero. Numerical experiments predict chaotic wanderings of surface floats 
through the ( r ,  @-phase space with velocities that in some circumstances far exceed 
those associated with the back-and-forth oscillations of the reference frame. Mixing 
regions near separatrix crossings are found, along with invariant tori, as expected 
from KAM theory. 

Figure 9 illustrates the typical phenomena. We consider n = 2 so that b,  = 13.7, 
A,  = 0.42U, A, = 0.42p-l(6-U) U, and M = 0.17U. From figure 8 ( b )  with p 2  = 0.3 
we take 6 = - 3 so that there are two stable solutions for the mean flow, U = -0.116 
and U = -3.13. The former is typical of an off-resonant weak retrograde jet, while the 
latter represents the near-resonant situation with a strong mean flow. We now vary 
u = Si and note that with p and S fixed this corresponds to simultaneous variations 
in the friction parameter Q = 1/3uZ and the detuning parameter A = - 7 . 1 4 ~ ~ .  
Figure 9 shows stroboscopic sections for various u. These sections are constructed by 
plotting particle positions a t  fixed phases of time, here either t = 2 + 2jjx or just t = 
2jn (in figure 9d) for j  = 0, l .  ..., 300. First look at the strong jet case with U = -3.13. 
At very small (r the motion is regular almost everywhere (figure 9a),  the exception 
being very near a separatrix crossing at the origin. As 6 increases (figures 9b, 9c,  9e) 
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FIQURE 9. Poincare' sections (stroboscopic return maps) for solutions of (40) and (41) with a number 
of initial particle positions. Three o'clock defines 8 = 0 and n = 2 (see (1)). All have 1/26 = 0.5, 
/3q = iY42-2 = 1.0, and trigger phase angle 2.0 (except d, which has phase 0). Cases (a+) 
have U = -3.13 and (f-g) have U = -0.116. (a) u = 0.005, ( b )  u = 0.015, (c, d )  u = 0.02, (e, f )  
u = 0.04, (9)  u = 0.4. 
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chaotic behaviour associated with the four hyperbolic fixed points of the map located 
a t  the wall gradually merges with that near the origin to fill almost all of the space 
inside the cylinder except that occupied by four small regular islands (figure 9e). 
When a different phase angle for the section is chosen (figure 9d) the plot rotates and 
also changes its structure slightly because time shifts in (40) and (41) are not simply 
equivalent to rotations in angle. 

For the large-U solution, chaotic particle paths dominate when u is greater than 
about 0.03. The associated value of S is miniscule ( z  3 x so this model predicts 
chaotic Lagrangian trajectories for all but the smallest mountains. For the off- 
resonant solution, U = - 0.116, shown in figures 9 ( f )  and 9 ( g ) ,  CT must be considerably 
larger before the KAM ton  are almost all destroyed. I n  this example u > 0.4, or S > 
0.06, are required, values which tax the validity of the weakly nonlinear expansion. 
A t  fixed CT there is a substantial qualitative difference in the particle tracks between 
the two multiple states (compare figures 9e and 9f). 

The strong flows (near resonance), complicated but periodic Eulerian time 
dependence, and chaotic Lagrangian motions in this simple system may have 
important ramifications for problems such as the interaction of time-dependent 
eddies with smaller scale bottom topography, periodic wind-forced currents, and 
seasonally forced flows in gyres like the western Indian ocean. We have concentrated 
here on quasi-geostrophic flow with a sinusoidal forcing. Questions such as the 
response in the presence of vertical stratification and to ageostrophic forcing where e 
and/or 8' are not small remain to be studied. 
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